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Abstract. A method based on an integral equation formulation together with the appli- 
cation of the Schwinger-Levine variational principle has been used to investigate the 
two-dimensional problem of the propagation of plane, harmonic, Love-type waves, incident 
normally (from either side) upon the step in a structure consisting of an infinite strip with a 
surface step. Diffraction of Love waves is described exactly by means of a scattering matrix, 
and approximate expressions for its elements are sought by plane-wave and variational 
methods. Complex reflection and transmission coefficients may then be obtained through a 
related transmission matrix. 

1. Introduction 

The problem of the diffraction of seismic surface waves at continental margins, 
mountain roots, etc is of considerable importance in geophysics. Unfortunately, the 
problem defies exact solution. Various authors have idealised a continental margin by a 
step change in elevation and have employed various analytical and numerical tech- 
niques to solve the problem with varying degrees of success (Sato 1961, Knopoff and 
Hudson 1964, Mal and Knopoff 1965, Alsop 1966, Gregersen and Alsop 1974,1976). 
Recently the author (Kazi 1978) has used a method based on an integral representation 
and the Schwinger-Levine variational principle to investigate the diffraction of plane, 
harmonic, monochromatic Love waves incident normally upon the plane of dis- 
continuity in a structure consisting of a half-space with a surface step. In this paper we 
use the same method to consider the same problem when the substratum is replaced by 
an infinite strip. These finite-depth problems possess certain mathematical and physical 
characteristics which distinguish them from the corresponding half -space problems. In 
an earlier paper (Kazi 1975) the author pointed out the difference between the 
mathematical behaviour of the two-dimensional Love-wave operators governing the 
propagation of monochromatic SH waves in laterally uniform, layered structures of 
finite and semi-infinite depths. The spectrum of eigenvalues was shown to be purely 
discrete in the former case and a disjoint union of the discrete and continuous spectra in 
the latter. This makes the natures of the two problems very different, and necessitates 
separate investigation of the finite-depth problem. 

In this paper we first describe exactly the diffraction of Love waves through a 
scattering matrix formulation. Approximate expressions for the elements of the 
scattering matrix are then obtained through the plane-wave approximation. A general 
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formula is derived from the transmission matrix, and some special cases are considered 
in which the transmission matrix assumes a fairly compact form. We then use the 
variational principle due to Schwinger and Levine (Moisewitsch 1966) to achieve the 
variational improvement of the plane-wave approximation in order to incorporate 
indirectly the effects of non-propagated modes. Explicit formulae for complex 
reflection and transmission coefficients can be obtained with the help of the trans- 
mission matrices. 

2. Equations of motion 

Consider a surface layer of rigidity pl, shear velocity pl, density p1 and variable 
thickness h l ,  hz( > hl )  overlying a layer of rigidity p ~ (  > p l ) ,  shear velocity p2( >PI) ,  
density p2 and thickness H - hl .  Both the layers are assumed’to be homogeneous and 
isotropic. Coordinate axes are chosen in such a way that the z axis is vertically 
downward, the interface is given by z = hl,  and the step in the surface of the upper layer 
is taken to lie in the plane x = 0 (see figure 1) .  The thickness of the upper layer is taken 
to be hl  for x e 0 and ht for x > 0, and we write 6 = ht - hl .  

Figure 1. 

We consider only the two-dimensional problems of the propagation of Love waves 
incident normally (from either side) upon the step, and postulate the time dependence 
exp( - iwt), w being the angular frequency. Thus the wave motion is entirely SH in 
character. The displacement fields in domains I(x < O )  and II(x > O )  are denoted by 

(1)  exp( -iwt)u(x, z )  = 

and 

exp( - iwt)ul(x, z ) ,  O S Z S h l ,  x < o  
exp( -iwt)ut(x, z ) ,  h l S Z S H ,  x < o  

exp( - iwt)u’ (x, z),  - 6  sz s h i ,  x > o  
exp(-iwr)uz (x, z ) ,  x > o  1 h 1 S z s H, 

exp( - iwt)u’(x, z )  = 

respectively. 

of the step are stress-free. Thus 
The surfaces z = 0, x < 0, z = - S = hl  - hz ,  x > 0, z = H Vx and the vertical surface 

x c o ,  ( 3 a )  au l / az  = 0 at z = 0, 
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av;/az = 0 at z = -8, x >o, (36) 

av2/az = 0,  (x < O), av;/az = 0, (x > O )  a t z = H  (3c) 

av;/ax = 0 at x = 0, - 8 S Z < O .  ( 3 4  
The complete solution for the displacement v(x, z )  in domain I(x CO) can be 

expressed in terms of the complete set of eigenfunctions (found in Kazi 1976) associated 
with the Love-wave operator for an infinite strip consisting of a layer of depth H - hl ,  
rigidity p2 and shear velocity P2, overlain by a layer of depth h l ,  rigidity p1 and shear 
velocity pl. Likewise, the complete solution for the displacement v’(x, z )  in domain 
II(x > 0) can be expressed in terms of the eigenfunctions for an infinite strip consisting 
of a layer of depth H - hl ,  rigidity p2 and shear velocity p2, overlain by a layer of depth 
h2,  rigidity p l  and shear velocity pl.  Thus in domain I 

v(x, z ) = - (  ( A m  exp(-ikmIx/)+Bm exp(ikmIxI)Xm(z) 

and 

m = l  

and in domain I1 
S 

v’(x, z )  = c [A; exp(-ikLx)+BL exp(ikLx)]xL(z) 
m = 1 

where (as in Kazi 1976) 

(13) 
U,,,, U:,, denote the group velocities, C,, CL the phase velocities in the two mth modes, 

( ~ l ( h ) = ( w ~ / P :  -A) ’ / ’ ,  ~ 2 ( h ) = ( h  - w 2 / P 2 )  , A = k 2 ,  (14) 2 1 /2  



1444 M H Kazi 

U:,) = a l ( A , ) ,  aim) = u2(Am), (15) 
where A, = k i ,  k, >0,  m = 1 , 2 , .  . ., r, A,, being the r positive real eigenvalues 
satisfying the dispersion equation 

C L I U I  t a n u l h 1 - p 2 u 2  t a n h a 2 ( H - h l ) = 0 .  
In x >0, 

( + ; ( A ’ ) = ( w 2 / p ?  -A’)’’’, (+;(A’)= ( ~ ’ - - ~ ~ / p : ) ’ / ~ ,  A = k”, (17) 

U;(,’ = u l ( A  A), a;”’ = u2(A A), (18) 

kL > O ,  m = 1 , 2  , . . . ,  s, (19) A A  =km, 

piu; tana;h2-CL2a; t a n h a ; ( H - h l ) = O .  (20) 

I 2  

A A being the s real positive eigenvalues satisfying the period equation 

In addition to  the aforementioned roots, the eigenvalue equations (16) and (20) 
have infinite, discrete sets { A j } ,  {A;} of negative real roots respectively: A, = (ikj)2 and 
A: = (ikj)2, j = 1,2 ,  . , , , kj and k: being real and positive. The eigenfunctions cor- 
responding t o  these eigenvalues are given by 

and 

where 
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3. Integral equation formulation 

Let ~ ( z )  denote the component .rXy of stress at any point in the plane x = 0: 

T(Z) = ~ ~ ~ l ~ = ~  = , ~ (z )av /ax l ,=~ -  = p(z)ad/ax lx=o- ,  z 2 0 .  (25) 

Equation ( 3 4  implies that T(Z) = 0 when - 6 S z < 0. 
In domain I 

and in domain I1 

Multiplying equation (26) by xm(z) ,  m = 1,2,  . . . , r and +(z,  k j ) ,  j 2 1, and integrating 
both sides with respect to z over the interval (0, H ) ,  we obtain 

-ikm(Am - B m ) =  m = 1 , 2  , . . . ,  r, (28) 

Likewise, if wemultiply equation (27) insuccession by,yA(z), m = 1 , 2 , .  . . , s, +b’(z, k j ) ,  
j = 1,2,  . . . and integrate with respect to z over the interval ( - 8, H), we obtain 

-ikA(AL-BL) = I .r(q)xk(q) dv = m = 1 , 2 , .  . . , r 

(.:.r(q) = 0 in the interval [-a, O ] ) ,  

- k : C ’ ( k : )  = I dq)@’(q,  kj) dq = lo T ( T ) ~ ’ ( v ,  k:) dt7, 

and invoking the matching condition v ( 0 ,  z )  = v ’ ( 0 ,  z ) ,  O S z  s H ,  we obtain 

H 

. r (q)xk,(q)  dq, (30) 
-S LH 

H H 

j = l , 2 ,  . . .  . (31) 

Substituting the expressions for C‘(kJ) and C ( k i )  from (31) and (29) in (4) and (5) 

-6 

i (Am +Bm)Xm(z)+ ( A A + B ~ ) x L ( ~ ) =  G(z, T ) ~ ( V )  dq, O < z a H ,  

(32) 
m = l  m = l  1 
where 

We emphasise that (32) is valid only for the interval O< z S H  (and not for 
- S s I < 0). Equations (28), (30), (32) and (33) constitute the integral equation 
formulation of the problem. Given the amplitudes of the incident modes (i.e. Am’s and 
Ak’s), we have to find the amplitudes of the transmitted and reflected modes (i.e. Bm’s 
and Bk’s )  from the r +s + 1 equations (28), (30) and (32) in B’s and ~(7). We note that 
~ ( q )  is unknown and so direct solution for B’s is not possible. Ultimately we will 
introduce plausible estimates in ~ ( 7 )  and thence obtain estimates of B’s. We find it 
convenient to restate the problem in matrix form. 
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4. Matrix formulation 

Let 

A 

be n x 1 matrices, n = r + s and 

Iki k2 

be an n x n diagonal matrix. Then we can rewrite equations (28), (30) and (32) in matrix 
notation as follows: 

(36) 

where the superscript T denotes the transpose. 
These equations can be considered in the following way: if the amplitudes of the 

propagated modes in the combinations A, + B,, m = 1,2, . . . , r, Ak + Bk,  m = 
1,2 , .  . . , s are given, we may find T ( V )  to satisfy (37) and then determine A, -B,, 
m = 1,2, . . . , r, AA - Bk,  m = 1,2, . . . , s from (36). This effectively yields n = r + s 
linear relations amongst the 2(r+s) coefficients A i ,  . . . ,A,, B1,. . . , B,, A;, . . . ,A:  
and B;, . . . , B:. 

From equations (36) and (37), we see that (i) A - B and A + B must be linearly 
related, and (ii) the unknown stress T ( Z )  must be linear in A + B. 

As a consequence of (i), there exists an n x n matrix S such that 

K .  ( A  - B )  =is. ( A  + B ) .  (38) 
The n x n matrix S -- llslill is called the scattering matrix. 

Rearranging (38), we obtain 

(K-is). A = ( K + i S ) .  B 

B = T . A ,  

T = ( K  + is)-' . (K -is), 

or 

where 

provided K + is is non-singular. 
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As a consequence of (ii), we can introduce an n x 1 matrix 

such that 

~ ( z )  = (AT+BT). ~ ( 2 ) .  

Substituting (43) into (37), we obtain 

whence 

(42) 

(43) 

on account of the linear independence and arbitrary character of A l  + B 1 ,  . . . , A, + 
B , , A ; + B ; ,  . . . , A i + B : .  

Equation (44) yields n uncoupled integral equations 
H 

X m ( 2 )  = I, G ( z ,  q ) T m ( q )  dt7, 

x A ( z )  = lo G(z, q ) ~ A ( t 7 )  dt7, 

JoH 

m = 1,2,  . . . , r (45) 

and 
H 

m = 1,2 ,  . . . , s (46) 

for the determination of r ( z ) .  
Substituting for ~ ( q )  from equation (43) in (36), we obtain 

K .  (A - B )  = i  x ( q ) .  [(AT+BT). 7(77)] dq, 

whence on replacing K. (A -B) by is. (A +B) (from equation (38)), we obtain 

or 
H 

si/ = I, X , ( t 7 ) T j ( V )  dv, i , j = l , 2 , .  . . , r , r + l ,  n = r+s ,  (47) 

where 
I X r t r  = x: and Tr+r =. Tr, t = 1 , 2  , . . . )  s. 

Our problem is now reduced to the solution of the integral equations (45) and (46) 
together with the determination of the scattering matrix from (47). The matrix T 
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(called the transmission marrix) in ( 4 0 )  or ( 4 1 )  will then yield the complex reflection and 
transmission coefficients. We define the complex reflection (transmission) coefficients 
as the ratios of the (complex) amplitudes of reflected (transmitted) and incident waves. 

So far, the formulation of the problem is exact. The exact solution is, however, not 
possible in practice, and we must seek approximate expressions for the elements of the 
scattering matrix. We may, for instance, return to $ 3 to construct a plane-wave 
approximation (see 9; 5 ) ,  or we may construct expressions for the matrix elements sli to 
which a variational principle applies and can be used to improve the approximation (see 
B 6 ) .  

5. Plane-wave approximation 

The plane-wave approximation consists of the neglect of non-propagated modes 
4 ( z ,  k i ) ,  4 ‘ ( z ,  k j ) , j  = 1 , 2 , .  . . . and thereforeof the kernel G(z, 77) in the formulationof 
$ 3 .  Thus we may omit the contribution to 7 from non-propagated modes and expand T 
in terms of x,(m = 1 , 2 ,  . . . , r )  or x L ( m  = 1 , 2 ,  . . . , s). We choose the former to obtain 

and rewrite equation (36) in the form 

or equivalently (on using orthonormality) 

= 1  

= 1  

where the coupling coefficients P,,, are given by the integrals 

A i m P i m  = lo W(T)X;(V)X~(V) dt7, i = l , 2  , . . . ,  s, m = 1 , 2  , . . . ,  r, (51) 
H 

with 

Ai, = (ki/k,,,)”’. 
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The factor Aim has been introduced in (51) for the sake of convenience. After some 
effort, we obtain 

A,,P,., = plD{Dmu:iir sin(a:"'s)/(k:2 - k2,) C O S ( ( T \ ~ ) ~ ~ )  cos(uYirh2), 
(53) 

where DI, D, are given by the RHS of (13) and (10) respectively, and 

k ;  - k : 2  = (54) 

R .  ( A - B ) = O ,  ( 5 5 )  

- = ( u k m ) ) 2  - 
Eliminating D1, D2, . . . , Dr from (50) and simplifying, we obtain 

where the s x n matrix R is given by 

\ 

\pAl/'As~ Py2/A,2 * .  * PvIAsr -11 .  
\ Y J \  + , 

s x r  s x s  

Setting G = 0 in (37), we obtain 

( A T + B T ) .  ~ ( z )  = 0. (57) 
Calculating the first moments of (57) with respect to p ( z ) x i ( z ) ,  i = 1, 2 , .  . . , r, we 

obtain a set of simultaneous, linear, algebraic equations equivalent to the matrix 
equation 

Q .  ( A  + B )  = 0 ,  

where the r x n matrix Q is given by 

i' 

Q = l  
Combining (55) and (58) into a single matrix equation, we obtain 

(9. A = (-i). B 

or 

B = T . A  where T = ( - Q - '  R )  . (R). Q 

The matrix T gives the reflection and transmission coefficients. 

(60) 

It is clear from the form of the matrix (-p) that in the general case (-;)-I has a very 
complex analytical expression. However, in some special cases we can find (-$)-' and 
the matrix T in a fairly compact form. 
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(i) When r =  1, s s l  (i.e. there is a single (fundamental mode) in the left-hand 
domain and there are s modes on the right) we obtain after considerable effort 

. . . -2P2iAsiPsi/A2i 

- 2Pi i A S  ips i / A  i i 

(62) 

- 2 + N - 2A 1iPii - 2A21P21 . . . -2As1Ps1 

-2P11/A11 -2P:i + N  - 2Pi iA2iP2 i / A  i i . . . 
-2P21PiiA11/A21 -2P:1 + N  

N 

-2Psi/Asi -2PsiPiiAii/Asi . . . .  -2P?1+N 

where 
2 N = 1 + P:1 +Psi +. . . +P,,. 

(ii) When r 2 1, s = 1 (in this case there is a single fundamental mode in the 
right-hand domain and there are r modes on the left) we find 

where 

N = 1 +P:l +P:2 +. . . +P:,. 

6. Variational formulation 

We now use the exact matrix formulation of the problem in pi 4 to construct expressions 
for the elements of the scattering matrix to which the variational principle of Schwinger 
and Levine applies. 

Multiplying the equation 
H 

~ i ( z )  = I, G(z ,  7 7 ) T i ( v )  dg, i = l , 2  , . . . ,  r , r+1,  . . . ,  n = r + s  (44) 

by ~ ~ ( 2 )  and integrating with respect to z over the interval (0, H ) ,  we obtain 
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Since G ( z ,  77) = G(7,  z ) ,  it follows from (67)  that sii = sji, and so the scattering matrix 
S = llsiill is symmetric. Using (47)  and (67)  we can write 

s.. = lo X i ( z ) T j ( z )  dz  I, Xj(77)Ti(t7) dt7/ J (68)  

If we introduce the notations (f, U )  =f:fu dz, Gu =I," G ( z ,  q ) u ( v )  d7, we can rewrite 
(68)  in the form 

Sij = ( X i ,  T j ) ( X j ,  Ti)/(GTi, T i ) ,  i , j = l , 2  , . . . ,  n. (69)  

H H H H  

Ti(z)G(z, t 7 ) T j ( t 7 )  dz  dt7. 
0 0  

Using the method given in Stakgold (1967) we can prove the following: 

Theorem. Let 

F(u,  v ) = ( x i ,  v>+(Xj ,  u)-(Gu,  U>. 
Then F is stationary for variations of U ,  U about U = T,, U = T ~ ,  where T ~ ,  T; are the 
solutions of the integral equations 

respectively. 

Corollary (Sch winger-Levine variational principle). Let 

R(u,  u ) = ( x j ,  U > ( X i ,  ~ ) / ( G u ,  U). 

Then R is stationary for variations of U ,  U about U = ( Y T ~ ,  U = P T ~ ,  where a, P are 
arbitrary non-zero constants. Moreover, 

R ( a ~ i ,  PT,) = s i j ( ~ i ,  T,) .  

It may be remarked that the Schwinger-Levine variational principle ensures the 
scale independence of the trial functions for T ~ ,  T~ 

The variational formulation of the problem enables us to proceed from a first 
approximation to approximations of an improved accuracy. In order to estimate a 
certain si j  we may substitute for U an approximation to the solution T~ of the first of 
equations (70) ,  and for v an approximation to the solution of the second of equations 
(70) .  If the errors in these approximations are O ( E ) ,  the error in the approximation for 
si; is O(E'). Alternatively, we might use eigenfunction expansions for T ~ ,  T~ in terms of 
xm(z )  and $(z ,  k ; )  and then invoke the variational principle to determine the 
coefficients in the expansions by setting the derivative of R with respect to each 
coefficient equal to zero. However, the resulting sets of algebraic equations are infinite 
in number. We choose an approach which is halfway between these two. We assume an 
expansion of T~ in terms of the propagated modes only, as for the plane-wave 
approximation: 
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We determine the coefficients D,, in the same way as if T[  were given in terms of the 
complete set of eigenfunctions. We differentiate R with respect to each Dip and put the 
result equal to zero. This is a heuristic approach; R may not be stationary in the Dip's if 
(71) is not an expansion in terms of a complete set. However, it appears to lead to 
satisfactory results in certain cases (see e.g. Miles 1946, 1967). 

Substituting (71) into the expression for F ( T ~ ,  T ] ) ,  we obtain 

where 

and 

4 ( z ,  k j ) 4 ( 7 ,  k j ) +  4 ‘ ( ~ ,  k ; ) 4 ’ ( z ,  k : )  
k i  G(z ,  7) = f ( 

k,  j = l  

(cf equation (33)). 
Substituting for G(z ,  7) in equation (73) and using the orthogonality relations 

10Hxp(z)4(z ,  k,)cL(z) dz = 0 ,  p = 1, 2 , .  . . , r , j a l ,  

we obtain 

Ipq = E L [  lo C L ( V ) X ~ ( T ) ~ ’ ( ~ ,  k:M‘(v, k:)cL(Z)xq(Z)dz d 7  
H H  

I kl 0 

H l H  =?k:Io cL(7)4’(7, k : ) X P ( 7 )  d 7  jO cL(z)4’(z,  k l ) X q ( Z )  dz. (74) 

It is clear from (74) that 

IPq = 4 P .  (75) 
Expressions for I,, are evaluated in the Appendix. 

in (72) is stationary with respect to variations in the Dip’s, which implies 
The coefficients Dip and Diq are determined subject to the assumption that F ( T ~ ,  r j )  

aF/aDip = 0 ,  (76) 

aF/aDjq = 0 ,  q = 1 , 2  , . . . ,  r. (77) 

p = 1 , 2 , .  . . , r 

and 

We thus obtain a set of r linear, algebraic equations for Dip, p = 1 , 2 , .  . , , r and 
another set of r linear, algebraic equations for Djq, q = 1,  2 , .  . . , r. If we solve the two 
sets of equations for D, and D,, p ,  q = 1,2 ,  . . . , r and substitute their values in (72), we 
obtain the required entry si j  of the scattering matrix. 
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where N = 1 + P:I + P:l + . . . + Pil ,  

I ( N  - 2) - i I i l  - 2A IIPII - 2A21P21 . . .  - 2As ips i 

-2P11lA11 ( N - ~ P : I ) - - ~ I ~ I  -~PIIAzIP~I/AII  . . . -~PIIA~IP~I /AII  

-2P;llA21 -~P~IPI IAI I IA~I  ( N - ~ P : I ) - ~ G I  . . . - ~ P ~ I A ~ I P ~ I / A ~ I  ' 

- 2pi I I A s  i - 2P5iPi i A  1 i / A 5  i . . .  . . . ( N - - Z J ~ ~ ) - - ~ I ~ ~ ,  

(78) 

If we set Iil = O  in (78), we obtain the matrix given by equation (62) for the 
corresponding case in the plane-wave approximation. Hence (78) is a variational 
improvement of the matrix obtained in the plane-wave approximation, and the effects 
of non-propagated modes are incorporated in the parameter Ii1. We may remark that 
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the total incident energy averaged over time is exactly partitioned into the time average 
of the total reflected and total transmitted energies concentrated in normal modes, and 
that no energy is carried by non-propagated modes. 
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Appendix 

(using dispersion equations (16) and (201, and 

- akm) tanh[a$"(H - hl)]}, 
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whence from (Al),  (A2) and (A3) we obtain 

From (74) and (A4) we have the following representation of I, as an infinite series 
which can be shown to converge in k '  (well enough for numerical work): 

(with I ( p ) ,  I ( q )  given by equation (A4)). 
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